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    The paper develops a framework for application of probabilistic methods to assess the variability 

in fracture mechanics life for components. The probability of failure for a component at a specific 

failure location is typically defined by a crack size exceeding a threshold crack size (e.g. as defined by 

repair or bore-scope inspection limits). The computation of the probability of failure in a predictive 

manner requires the ability to compute crack initiation and crack propagation life in a probabilistic 

manner. This paper describes the essential elements of a framework that enables the computation of 

probabilistic fracture mechanics life and exercises the ingredients of this framework on a benchmark 

problem with focus on crack growth model parameter variability. The demonstration on the 

benchmark problem provides insights into some of the issues that need to be considered towards the 

development of a rigorous probabilistic life assessment framework. Some of the practical challenges 

towards extending the results to complex industrial applications are highlighted as scope for future 

efforts.   

 

 
I. Introduction 

    Probabilistic life analysis is a method used to evaluate the variation around life or time/cycles to failure 

predictions for components. Life predictions for components are done for a variety of reasons. Generally, 

these analyses fall into one of two categories. The first is assessment of the operational reliability (e.g. 

operational disruption such as unscheduled engine removal). The second category of analysis is durability 

(e.g. time to scrapping of the component). Those components that historically drive reliability or durability 

issues (e.g. hot section components) and whose lives are highly sensitive to variation are candidates for 

probabilistic analysis [1]. The probabilistic life assessment framework seeks efficient methods to 

characterize and propagate variation in the input variables to the life of various critical features.  Figure 1 

shows the process for deterministic assessment of component life at a particular failure location [2]. The 

development of a predictive probabilistic assessment framework for total life that incorporates all the 

elements of the deterministic process (e.g. component temperature, stress analysis, initiation life) is our 

long term vision.  

 

Two key challenges in the development of such a probabilistic framework include (a) the ability of the 

deterministic life models to accurately represent the average life consumption of fielded hardware – 

uncertainty in our ability to predict life through models (e.g. assumptions on material microstructure 

effects, hold time effects, thermo-mechanical fatigue, crack tip plasticity effects)  (b) the ability to 

characterize the various sources of variation that need to propagate through the life modeling process (e.g. 

heat transfer boundary conditions, crack initiation material models, creep material model variability etc.). 

The validation of such a predictive probabilistic life assessment framework requires the ability to obtain 

component field inspection data (e.g. presence or absence of cracks in fielded hardware, crack size of 

fielded parts). The life predictive models can be exercised in a probabilistic manner for the operational 

conditions that are representative of the component exposures and a schematic of a comparison between 

model predictive and field life is shown in Figure 2. Differences in the mean life between model and (good 

quality) field data provide an indication of the accuracy of the predictive life models and difference in 

standard deviation between models and (good quality) field data are representative of our ability to 

characterize and propagate the sources of variation through the life modeling process. The ability to predict 

both mean life and the variation in life accurately provides us with a better understanding of risk to failure 
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for a variety of operating conditions on fielded hardware and provides a foundation towards design for 

reliability on new engine designs and architectures.  

 

 
Figure 1: The process for deterministic assessment of component life at a failure location [2] 

 

            
Figure 2: Schematic of an output from exercising a probabilistic predictive life assessment 

framework and validation with field life data at a specific failure location. Life to a crack reaching a 

threshold crack size is shown and is a combination of both initiation and propagation life. 
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The scope of the current paper is to take a first step towards the development of a probabilistic framework 

with emphasis on fracture mechanics life. A standard benchmark problem (referred to as “Virkler data” in 

literature) was provided by Air Force Research Labs with fixed mechanical loading at constant temperature 

for 2024-T3 Aluminum alloy [3]. The only significant source of variation that was considered was the 

crack growth model properties and the elements of the probabilistic framework that enable this benchmark 

are highlighted in this paper. Crack length (a) versus cycles (N) as shown in Figure 3 were provided for 68 

center crack specimens under the same nominal loading conditions starting from an initial crack size of 9 

mm to a final crack size of 49.8 mm, at a constant R-Ratio of 0.20 (with 164 measurements in intervals of 

0.2/0.4/0.8 mm in different regions). This is also a good benchmark problem from the perspective that other 

authors have considered this in the recent past [4, 5]. 

 

 

 
                                                                               

Figure 3: Crack length (a) in mm versus cycles (N) for 68 specimens from reference [3] shown here 

along with the finite element model used for stress intensity computations   
 

 

II. Description of the Fracture Mechanics Benchmark  
 

Examination of the data in Figure 3 reveals that there is large inter-specimen (specimen-to-specimen) 

variability in the fracture mechanics life (for a 9mm crack to grow to 48.2 mm) between 222792 to 320996 

cycles. A secondary source of variability is the intra-specimen (within specimen) variation that can be 

observed through the wiggles in the crack growth trajectory of a single specimen. For the current effort, we 

will restrict our attention to the dominant inter-specimen variability. This is similar to the random variable 

approach described in reference [4] where an alternate random process/stochastic approach has also been 

considered to model the intra-specimen variability. The results from [4] also describe after detailed analysis 

that consideration of the inter-specimen variability is a viable approach to describe the variability in life for 

this problem. The model chosen to describe the crack growth behavior is the Paris model with parameters 

“C” and “n” that are random variables that vary from specimen to specimen.  

                                                      
nC aK

dN

da
)]([10                                                                          (2.1) 

This form of a model is consistent with that used in references [3, 5] and a higher order model has been 

used in reference [4] to describe the crack growth behavior.  The relationship between the crack tip stress 

intensity range K and crack length is taken corresponding to a center crack specimen in [6], where P is 

the range of the applied load, W and t are the specimen width and thickness respectively, G(a) is the 

geometry factor associated with the center crack specimen. 

Cycles (N) 
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The following relationship was used for the geometry factor G(a): 
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Numerical integration of the following equation between appropriate limits was performed in order to get 

the non-linear relationship between a and N as described by the Paris model  
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The values of W and t were 152.4 mm (6 in) and 2.54 mm (0.1 in) and the value of P was 18.682 kN (4.2 

kips). The Paris constants “C” and “n” are computed in units consistent with the original paper [3] where 

units for stress-intensity K are in ksi×in
0.5

 and units for da/dN are inches/cycles (A units conversion can 

be done to obtain Paris model “C” in metric units where K is in MPa×m
0.5

 and da/dN is in mm/cycles). 

The availability of a closed form K solution for the case of this load controlled crack growth situation 

eliminates the need to perform detailed 3D fracture mechanics finite element simulations, however the 

current framework is being developed to handle such scenarios in the future. Recent efforts in [7,8] have 

provided a generic interpretation of the Paris crack growth behavior that provides some insights into the 

high correlation coefficient between Paris coefficients observed in experimental testing and the specimen 

size dependencies of these parameters. The implications of some of this recent work on practical 

applications and on the predictive nature of these crack growth models (i.e. translating results from 

specimens to hardware, from one material pedigree/heat treatment to another) needs further study.           

 

III. Estimation of Crack Growth Model Parameter Variation 
    One can envision multiple approaches to characterize the crack growth model parameters C and n using 

data from the 68 specimens [e.g. 3-5]. We describe some options here: 

 

1. Option 1: A non-linear estimator is used to estimate crack growth parameters for each specimen 

separately by matching “a” versus “N” information between the crack growth model (integrated 

form of equation 2.4) and data. A joint distribution for C and n is fit to the 68 estimated pairs. 

Such an approach is quick to develop, has been considered in reference [5] and lays the foundation 

for more advanced modeling methods (example: described in options 3 and 4) 

2. Option 2: The crack growth rate versus stress intensity range follows a linear relationship in the 

log-log space according to Paris model and a linear regression model is used to infer crack growth 

model parameters. Such an approach is simple to implement but is dependent on the numerical 

scheme used to describe the crack growth rates from “a” versus “N” data (e.g. modified secant 

method has been proposed in reference [3] as a good choice). This option has been used in 

references [3-4] with reference [4] adopting a higher order crack growth rate model  

3. Option 3: A non-linear mixed (fixed + random) effects model as described in [9] can be used to 

characterize the mean behavior of C and n (fixed effects) as well as the inter-specimen variability 

(random effects) in C and n. This is a more rigorous version of option 1 since it considers the 

likelihood of the model matching all 68 specimen data simultaneously to characterize the crack 

growth model parameters. This is a classical statistical reliability approach to handle repeated 

measures or degradation data and would fit well in the context of the current data [3]. The 

maximum likelihood computation is quite involved and this option will be considered in our future 

efforts. 

Approved for public release; distribution unlimited.
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4. Option 4: Bayesian estimation methods would be good choices if we advance to more advanced 

crack growth models that capture curvature near the threshold and critical stress intensities. The 

crack growth data in this benchmark does not have sufficient information in these non-linear 

regimes (especially at the critical stress intensity) and the use of Bayesian methods that use other 

sources of 2024-T3 Aluminum data for threshold and critical stress intensity in conjunction with 

the data in [3] can be beneficial. Advanced crack growth models should also consider the 

implications of references [7, 8].   

 

The current paper is focused on the comparison of the first two options listed above. For option 1, a non-

linear least squares approach was used to minimize the model-data mismatch in crack length for various 

cycles at which the crack was observed [10]. The utilization of the non-linear least squares approach makes 

the “assumption” that residual errors (due to measurement uncertainty and modeling error) in the crack 

length are distributed in normal fashion. This assumption was tested at the end of the estimation process. 

The estimated Paris model coefficients for C and n are provided in Figure 4. 

                     
Figure 4: Estimated Paris Coefficients using option 1 approach for 68 different specimens. 

 

The result of using the estimated C and n values in the crack growth model is shown against the backdrop 

of the data and along with the residuals in Figure 5. Results for 2 specific units (units 1 and 49) are shown 

in Figure 6 for better visual clarity.   

 

 

 

 

   

 

 

 

 

 

 

   

 

 

 

Cycles (N) 

Residuals 
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Figure 5: “a” versus “N” for 68 specimens from the “estimated/fitted” model compared to 

the data. (Model shown in blue, data in red and residuals in brown) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: “a” versus “N” comparisons for unit 1 and unit 49 highlighted for visual clarity 

 
Based on these results, we infer that the inter-specimen variability in the crack growth model parameters is 

captured quite well. The intra-specimen variability (e.g. noticed in unit 49) where the model has a smooth 

behavior whereas the data shows some variation, is not captured as well. Figure 7 shows the sum of squares 

of the residuals (between the model and data) in crack size for various specimens. This measure provides a 

“quick” understanding of intra-specimen variability (i.e. local deviation from Paris model) that the 

experimental data demonstrates. This emphasizes the need to better characterize the local microstructure 

influence on the crack growth rates to improve life prediction ability. 

 

              
Figure 7: Sum of squares of residuals in the crack size between the model and the data for each of the 

specimens. Only specimens with higher residuals were shown here for clarity. 

Unit 49 Unit 1  

Cycles (N) Cycles (N) 
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 7 

 

 

Normal probability plots of residuals for units 1, 46 and 49 are shown in Figure 8. The better behavior of 

residuals and the consistent normality assumption for unit 1 relative to units 46 and 49 that had the highest 

two sum of squares of residuals is noted.  Overall the normality assumption of the residuals (that permits 

the applicability of non-linear least squares) agrees quite well for most units with some strong deviations 

observed in units 46 and 49. A more comprehensive understanding of the intra-specimen variability due to 

the local/heterogeneous material microstructure is needed if we want to capture this aspect in the modeling 

process. Some of these aspects can be captured through the generalized Paris model forms suggested in [8].     

 

 
Figure 8: Normal probability plot of crack size residuals between the fitted model and data for 3 

representative units   
 

 

Estimates from option 2 (estimation using da/dN versus K) were obtained in order to compare against the 

results from option 1. Figure 9 shows the da/dN (inches/cycle) versus K ksi-sqrt-in) values for the 68 

specimens in log-log scale. A modified secant method as suggested in [3] was used to compute the crack 

growth rates. It must be noted here that the crack size measurements were provided at 0.2/0.4/0.8 mm 

intervals (depending on the crack size region) and introduces a source of numerical error in the estimate of 

the crack growth rate derivatives. This results in a difference in accuracy between the approaches used in 

option 1 (or option 3) investigated in this work, reference [5] versus the approaches that were used in 

references [3, 4].  A least squares regression line over all the data points provides mean estimates for (C, n) 

as (-8.3703, 2.9294).  

 

A quick engineering estimate of minimum crack propagation life is often obtained by using the “+3 sigma 

material properties” on the Paris intercept C and keeping the Paris slope n as a constant. It will be shown 

that such a method to compute the minimum life is not necessarily consistent with the actual “-3 sigma 

propagation life”. A more detailed description of the limitation of such approaches has been highlighted in 

reference [5].  

 

The other observation that can be made through Figure 9 is that the crack growth data shows some amount 

of curvature near the threshold that the Paris model cannot capture. This would motivate the use of 

advanced crack growth models that captures the near threshold/short crack behavior more accurately. The 

break that is observed in log K values at around 1.2 is due to the fact that we are using different geometry 

factors G(a) around a / W ratio of 0.25. A comparison of the geometry factors from a finite element model 

versus the closed form solution is shown in Figure 10.     

Approved for public release; distribution unlimited.
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Figure 11 shows the comparison of “C and n” estimates from the two different estimation options for the 68 

specimens. This plot shows the significantly different estimates that one obtains on a unit by unit basis for 

each of the specimens from the two options. One of the reasons for the difference is the numerical error in 

crack growth rate derivative computations in the option 2 method. Various options for the computation of 

the crack growth rate have been investigated in [3], but an effective way to eliminate this problem would be 

to choose the option 1 type approach to obtain the crack growth material properties. The option 1 approach 

is shown in section IV to improve the life computation accuracy compared to the option 2 approach.   

        

 
Figure 9: “da/dN” versus “K” for 68 specimens shown in Log-Log plot.  “+3 sigma” value of C is 

shown to demonstrate a flaw in computation of “-3 sigma” life. 

 

Average 
“+ 3 sigma C” 
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Figure 10: Comparison of the 3D finite element based crack stress intensity geometry factors versus 

the closed form geometry factors; showing the jump in the closed form solution at a/W of 0.25. 

 

The relationship between “da/dN” versus “K” corresponding to mean values of estimates from both 

options is shown in Figure 12. This plot shows that the crack growth rates are overestimated using the 

option 2 “da/dN” versus “K” method relative to the option 1 “a versus N” method. This motivates the 

need to be sensitive about the computation of the crack growth rates from the raw experimental data while 

using the option 2 approach in estimating crack growth material properties and scatter. These findings are 

expected to be applicable even after we advance to other crack growth model forms (e.g. suggested in 

references [7,8]).     
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Figure 11: A cross plot of Paris coefficient estimates (C, n) from the 2 options for estimation is shown 

for each of the 68 specimens.  

 

 

 

 

                

                    
Figure 12: Mean crack growth rates estimated using option 1 and option 2 methods to characterize 

crack growth model coefficients. 
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IV. Probabilistic Assessment of Fracture Mechanics Life  

 
In order to translate the impact of crack growth model parameters on fracture mechanics life and in order to 

leverage these results for future simulations – a joint distribution was computed for (C, n) using the 68 

estimates obtained from option 1 and option 2 methods. A more comprehensive description of the benefits 

of using such a joint distribution has been discussed in reference [5].  This was performed using the Crystal 

Ball software and is shown in Figure 13. It was observed that the normal distribution did not perfectly 

characterize the variability observed in C, n. Improvements to capture this variability would include (a) the 

ability to fit multivariate distributions (b) understanding the impact of sample size and (c) understanding 

the limitation of Paris-law type model coefficients in describing the crack growth behavior, and these 

aspects will be pursued in subsequent efforts. Results reported in this paper assume a normal distribution 

for “C” and “n” and these provide a starting point to understanding and predicting the variability in fracture 

mechanics life. The current paper uses the traditional Monte Carlo analysis with around 5000 runs and the 

advanced mean value method (a type of fast probability integration method) from [7] to propagate the crack 

growth model parameter variability to compute the life distributions from the model and compare versus 

the coupon data.  
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Figure 13: Normal probability fit to 68 specimens for the Paris coefficient C and the correlation 

coefficient estimate between C and n is highlighted. 

 

Since all 68 specimens were used in the estimation of the crack growth model coefficients – the life 

distribution from the model is expected to be close to the data. Life for crack to grow from an initial crack 

size of 9 mm to a crack size of 49.8 mm is reported in Figure 14. The log-normal distribution agreed well 

with the life distribution obtained through Monte-Carlo simulations and a comparison against the coupon 

data revealed that the option 1 approach provided life distributions that were very close to the experimental 

data. It was also observed that the results from option 2 method under-predicted the life significantly. The 

ability to use fast probability integration methods like the advanced mean value method to accurately 

represent the life variation with as few as 12 runs is also demonstrated through this benchmark. A 

significant element of the probabilistic framework is the ability to replace the Monte-Carlo simulation 

procedure by an efficient method that can compute distributions of life based on a few number of 

simulations. This is necessary when exercising the probabilistic framework on Figure 1 with finite element 

based fracture mechanics analyses from [2]. 

 

These results also demonstrate the deviation of the experimental life from log-normal at the right tail of the 

distribution. This deviation was the result of the intra-specimen variability reported in Figures 7, 8. If the 

two specimens with the highest crack size residuals (46 and 49) were removed from the data-set, it was 

noted that the experimental data followed a log-normal distribution in a better fashion and suggested that 

intra-specimen variability as the reason for the tail deviation in the data.               
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Figure 14: Results of life for the crack to reach 49.8mm from an initial size of 9 mm using the 

estimates from option 1 and option 2. Note that the log-normal distribution is a good fit to the results 

from the Monte Carlo simulation except at the right tail.   

 

            

Figure 14 – option 1 method demonstrates the ability of the some of the elements of the probabilistic 

framework in terms of being able to accurately characterize the variability in fracture mechanics life 

through a modeling framework. It was also noted that the use of “+3 sigma material properties” (constant 

Paris n and +3 sigma C as noted in Figure 9) results in an estimate for minimum life of around 132,019 

cycles that is significantly lower than the true -3 sigma life that is closer to 208,313 cycles. Figure 15 shows 

the error in the predicted life for the crack to reach 3 different crack sizes of 20mm, 35mm and 49.8mm in 

terms of the average (expected value) and standard deviation between the Monte Carlo simulations and the 

empirical life analysis of the experimental data. A comparison of the option 1 results against reference [5] 

demonstrates similar errors in mean life and standard deviation and significantly improved results over that 

published in reference [3,4] that use the option 2 approach. It should be mentioned that the use of a higher 

order crack growth model in reference [4] resulted in better estimates of mean life (within 2%) as opposed 

to the 5% errors that were noticed with the option 2 approach with the Paris Law Model in this work. The 

under-prediction of the standard deviation in the model is due to the presence of the 2 outliers (specimens 

46 and 49) that are related to the intra-specimen variability in the data. Note that the 7% error in standard 

deviation in life at final crack size using option 1 is also smaller than the 10% errors noted in reference [4] 

and the 15% error in standard deviation in life at final crack size using option 2 is higher than the 10% 

errors noted in reference [4]. Since the “da/dN” versus “K” approach is reference [4] resulted in 

improvements over the option 2 approach presented here, it can be surmised that the use of a higher order 

crack growth rate model rather than the Paris model would potentially further improve the results with the 

option 1 approach presented here. 
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Figure 15: Error in the predicted mean life and predicted standard deviation in life to a crack size as 

specified in the x-axis using the Monte Carlo method for options 1 and 2.   

 
The following conclusions can be made based on the results from this benchmark:  

 Log-normal distribution was found to characterize the predicted life from the models as well 

as the experimental data in the absence of 2 outliers.   

 The presence of intra-specimen variability in the experimental data was noted and was found 

to be a potential source of the deviation of the experimental life from log-normal at the right 

tails. Two specimens – 46 and 49 were identified as having a rather high intra-specimen 

variation compared to the Paris Law type crack growth.   

 The use of “+ 3 sigma” property for C and constant n (as mentioned in Figure 9) to compute 

minimum life was shown to provide a much lower minimum life than the true – 3 sigma life 

from the experimental data.  

 The high correlation coefficient between the Paris law coefficients was noted and recognized 

to be important in terms of capturing the variability in life accurately. This aspect has already 

been discussed in detail in [5, 7, 8].  

 Estimation of crack growth model coefficients is performed more accurately in the “a versus 

N” space rather than the “da/dN versus “K” space. Although computationally more 
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intensive, this approach is less sensitive to the numerical error introduced in the crack growth 

rate computation. This conclusion could have also been made by a comparison of   results 

from reference [4] and [5] and these results explicitly emphasize that understanding. 

 The ability to use fast probability integration methods to efficiently propagate (with 12 runs) 

the crack growth model parameter variation to compute the variation in life with the same 

level of accuracy as Monte Carlo methods (with 5000 runs) was shown here.  

 Since the use of a higher order crack growth rate model in [4] resulted in improved results 

compared to the “da/dN versus “K” estimation using the Paris Law model in this paper; the 

use of a higher order crack growth rate model that better captures curvature is expected to 

show an improvement with the option 1 approach and will be pursued in a future phase of this 

effort along with the implications of references [7, 8]. 

 

V Extension to Industrial Applications   

 
The results of this benchmark problem demonstrate some of the elements of the probabilistic fracture 

mechanics framework, however the extension to industrial applications (e.g. Aviation hot section 

components) as described in Figures 1, 2 require more challenging elements of the framework to come 

together as described here. 

 

Challenges from a field validation and assessment perspective: 

1. The validation of a probabilistic life assessment framework for component hardware (as 

opposed to coupon data) requires the understanding of the distribution of operating conditions 

since the life consumption in the field is a strong function of the operating conditions that 

impact the mechanical/thermal loading. A cumulative fracture mechanics life consumption 

model that accounts for the impact of the operational history using the full distribution of 

these parameters would be required (The loading was deterministic/fixed in the benchmark 

problem considered in the paper)  

2. The ability to obtain good quality inspection data on components at regular intervals including 

information on crack size at the key failure locations is important from a validation 

perspective (We get lower quality component field data compared with the quality of data  we 

get on experimental specimens in the lab)  

3. The field life assessment often requires the assessment of both crack initiation life and crack 

propagation life since the field inspection data intervals may not purely track the crack 

propagation aspect. Although the crack propagation life may be a significant portion of the 

overall life of the component, the presence of an initiation life piece in the fielded hardware 

makes it a key element of the overall probabilistic life assessment framework (The benchmark 

problem started with a constant initial crack size of 9mm with regular subsequent  

measurements of crack size ) 

     

 Challenges from a life modeling perspective: 

4. Although crack growth model parameter variation is a significant source of scatter in life for 

both initiation and propagation; there are other sources of variation due to hardware 

geometry/manufacturing that need to be considered in the framework. These sources of 

variation can potentially impact the crack tip stress intensity to be a random variable.  

5. Key sources of variation (e.g. operation, manufacturing, material) can be propagated through 

the life modeling process. However in a complex mechanical system, there are bound to be 

several sources of variation that can be difficult to characterize. A combination of field / 

experimental data from various sources for different modeling aspects (e.g. temperature, 

stress, life) needs to be integrated into the framework. The crack growth property variation is 

just one example of a source of variation that was captured in the current paper.  A global 

sensitivity analysis framework accounting for the nature of the distributions is needed to 

identify the key input parameters that impact crack tip stress intensity, crack growth life and 

trajectory [12]. This screening is important since the number of input parameters that can 

potentially influence life can be large.  

Approved for public release; distribution unlimited.



 16 

6. Computing the average life accurately in a complex mechanical system is challenging for 

many reasons (e.g. lab tests not representative of actual operating conditions, conservative 

methods that add margin used in the modeling phase during design, accuracy of modeling 

methods for advanced materials in harsh environments). These uncertainties (or lack of 

knowledge) also impact our ability to understand stress and temperature loading that is key to 

the computation of the stress intensity as well as the crack growth rate material properties. 

These uncertainties also limit our ability to propagate known sources of variation through the 

models to understand the variation in life. References [7, 8] highlight some of these 

challenges even in the context of the crack growth models considered for this benchmark.          

7. Fracture mechanics analysis for complex components can be time intensive due to the use of 

finite element based approaches to obtain accurate stress intensity values for multiple crack 

geometries [2]. The ability to develop efficient and accurate (fast) meta-models that capture 

the non-linearity of the stress intensity response in the input parameter space is critical in the 

development of a probabilistic fracture mechanics simulation [13] 

 

These are some of the key reasons for the differences that we often observe between the model predictions 

and the field data highlighted in Figure 2. Mismatch in the mean values between the model and the data 

help us understand modeling entitlement/uncertainty and provide the basis for improving the deterministic 

life models. Mismatch in the standard deviation values between the model and the data help us understand 

model based variation prediction entitlement and provide the basis for improving probabilistic life models. 

A preliminary framework for making these assessments has been developed in [14] and future 

improvements to address some of the challenges discussed here are currently being considered using a 

system level Bayesian approach [15, 16].    
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